Dynamics of AV coupling during human atrial fibrillation: role of atrial rate

Author:

Masè M.1,Marini M.2,Disertori M.23,Ravelli F.1

Affiliation:

1. Department of Physics, University of Trento, Povo-Trento, Italy;

2. Division of Cardiology, Santa Chiara Hospital, Trento, Italy; and

3. Healthcare Research and Innovation Program, PAT-FBK, Trento, Italy

Abstract

The causal relationship between atrial and ventricular activities during human atrial fibrillation (AF) is poorly understood. This study analyzed the effects of an increase in atrial rate on the link between atrial and ventricular activities during AF. Atrial and ventricular time series were determined in 14 patients during the spontaneous acceleration of the atrial rhythm at AF onset. The dynamic relationship between atrial and ventricular activities was quantified in terms of atrioventricular (AV) coupling by AV synchrogram analysis. The technique identified n: m coupling patterns ( n atrial beats in m ventricular cycles), quantifying their percentage, maximal length, and conduction ratio (= m/ n). Simulations with a difference-equation AV model were performed to correlate the observed dynamics to specific atrial/nodal properties. The atrial rate increase significantly affected AV coupling and ventricular response during AF. The shortening of atrial intervals from 185 ± 32 to 165 ± 24 ms ( P < 0.001) determined transitions toward AV patterns with progressively decreasing m/ n ratios (from conduction ratio = 0.34 ± 0.09 to 0.29 ± 0.08, P < 0.01), lower occurrence (from percentage of coupled beats = 27.1 ± 8.0 to 21.8 ± 6.9%, P < 0.05), and higher instability (from maximal length = 3.9 ± 1.5 to 2.8 ± 0.7 s, P < 0.01). Advanced levels of AV block and coupling instability at higher atrial rates were associated with increased ventricular interval variability (from 123 ± 52 to 133 ± 55 ms, P < 0.05). AV pattern transitions and coupling instability in patients were predicted, assuming the filtering of high-rate irregular atrial beats by the slow recovery of nodal excitability. These results support the role of atrial rate in determining AV coupling and ventricular response and may have implications for rate control in AF.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3