Load-dependent extracellular matrix organization in atrioventricular heart valves: differences and similarities

Author:

Alavi S. Hamed12,Sinha Aditi12,Steward Earl3,Milliken Jeffrey C.3,Kheradvar Arash12

Affiliation:

1. The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, California;

2. Department Biomedical Engineering, University of California, Irvine, Irvine, California; and

3. Division of Cardiothoracic Surgery, University of California, Irvine, Irvine, California

Abstract

The extracellular matrix of the atrioventricular (AV) valves' leaflets has a key role in the ability of these valves to properly remodel in response to constantly varying physiological loads. While the loading on mitral and tricuspid valves is significantly different, no information is available on how collagen fibers change their orientation in response to these loads. This study delineates the effect of physiological loading on AV valves' leaflets microstructures using Second Harmonic Generation (SHG) microscopy. Fresh natural porcine tricuspid and mitral valves' leaflets ( n = 12/valve type) were cut and prepared for the experiments. Histology and immunohistochemistry were performed to compare the microstructural differences between the valves. The specimens were imaged live during the relaxed, loading, and unloading phases using SHG microscopy. The images were analyzed with Fourier decomposition to mathematically seek changes in collagen fiber orientation. Despite the similarities in both AV valves as seen in the histology and immunohistochemistry data, the microstructural arrangement, especially the collagen fiber distribution and orientation in the stress-free condition, were found to be different. Uniaxial loading was dependent on the arrangement of the fibers in their relaxed mode, which led the fibers to reorient in-line with the load throughout the depth of the mitral leaflet but only to reorient in-line with the load in deeper layers of the tricuspid leaflet. Biaxial loading arranged the fibers in between the two principal axes of the stresses independently from their relaxed states. Unlike previous findings, this study concludes that the AV valves' three-dimensional extracellular fiber arrangement is significantly different in their stress-free and uniaxially loaded states; however, fiber rearrangement in response to the biaxial loading remains similar.

Funder

Children's Heart Foundation (CHF)

Edwards Lifesciences Foundation

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3