Author:
Hobson Tracy N.,Flewitt Jacqueline A.,Belenkie Israel,Tyberg John V.
Abstract
The left atrium (LA) acts as a booster pump during late diastole, generating the Doppler transmitral A wave and contributing incrementally to left ventricular (LV) filling. However, after volume loading and in certain disease states, LA contraction fills the LV less effectively, and retrograde flow (i.e., the Doppler Ar wave) into the pulmonary veins increases. The purpose of this study was to provide an energetic analysis of LA contraction to clarify the mechanisms responsible for changes in forward and backward flow. Wave intensity analysis was performed at the mitral valve and a pulmonary vein orifice. As operative LV stiffness increased with progressive volume loading, the reflection coefficient (i.e., energy of reflected wave/energy of incident wave) also increased. This reflected wave decelerated the forward movement of blood through the mitral valve and was transmitted through the LA, accelerating retrograde blood flow in the pulmonary veins. Although total LA work increased with volume loading, the forward hydraulic work decreased and backward hydraulic work increased. Thus wave reflection due to increased LV stiffness accounts for the decrease in the A wave and the increase in the Ar wave measured by Doppler.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献