Modulation of the rate of cardiac muscle contraction by troponin C constructs with various calcium binding affinities

Author:

Norman Catalina,Rall Jack A.,Tikunova Svetlana B.,Davis Jonathan P.

Abstract

We investigated whether changing thin filament Ca2+sensitivity alters the rate of contraction, either during normal cross-bridge cycling or when cross-bridge cycling is increased by inorganic phosphate (Pi). We increased or decreased Ca2+sensitivity of force production by incorporating into rat skinned cardiac trabeculae the troponin C (TnC) mutants V44QTnCF27Wand F20QTnCF27W. The rate of isometric contraction was assessed as the rate of force redevelopment ( ktr) after a rapid release and restretch to the original length of the muscle. Both in the absence of added Piand in the presence of 2.5 mM added Pi1) Ca2+sensitivity of ktrwas increased by V44QTnCF27Wand decreased by F20QTnCF27Wcompared with control TnCF27W; 2) ktrat submaximal Ca2+activation was significantly faster for V44QTnCF27Wand slower for F20QTnCF27Wcompared with control TnCF27W; 3) at maximum Ca2+activation, ktrvalues were similar for control TnCF27W, V44QTnCF27W, and F20QTnCF27W; and 4) ktrexhibited a linear dependence on force that was indistinguishable for all TnCs. In the presence of 2.5 mM Pi, ktrwas faster at all pCa values compared with the values for no added Pifor TnCF27W, V44QTnCF27W, and F20QTnCF27W. This study suggests that TnC Ca2+binding properties modulate the rate of cardiac muscle contraction at submaximal levels of Ca2+activation. This result has physiological relevance considering that, on a beat-to-beat basis, the heart contracts at submaximal Ca2+activation.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3