Effects of a reduction in the number of gap junction channels or in their conductance on ischemia-reperfusion arrhythmias in isolated mouse hearts

Author:

Sánchez Jose A.1,Rodríguez-Sinovas Antonio1,Fernández-Sanz Celia1,Ruiz-Meana Marisol1,García-Dorado David1

Affiliation:

1. Laboratorio de Cardiología Experimental, Vall d'Hebron University Hospital and Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain

Abstract

A transient reduction of cell coupling during reperfusion limits myocardial necrosis, but little is known about its arrhythmogenic effects during ischemia-reperfusion. Thus, we analyzed the effect of an extreme reduction in the number of gap junction channels or in their unitary conductance on ventricular arrhythmias during myocardial ischemia-reperfusion. Available gap junction uncouplers have electrophysiological effects independent from their uncoupling actions. Thus, isolated hearts from Cx43Cre-ER(T)/fl mice treated with 4-hydroxytamoxifen (4-OHT), from Cx43KI32 mice [in which connexin (Cx)43 was replaced with Cx32], and from control animals were submitted to regional ischemia and reperfusion, and spontaneous and induced ventricular arrhythmias were monitored. In additional hearts, changes in activation time and electrical impedance during global ischemia-reperfusion were assessed. In contrast to treatment with 4-OHT, replacement of Cx43 with Cx32 did not modify baseline activation time or electrical impedance. However, the number of extrasistole and ventricular tachyarrhytmias was higher in isolated hearts from Cx43KI32 and 4-OHT-treated Cx43Cre-ER(T)/fl animals versus wild-type animals during normoxia, ischemia (12.29 ± 3.26 and 52.17 ± 22.51 vs. 3.00 ± 1.46 spontaneous tachyarrhythmias, P < 0.05), and reperfusion. The impairment in conduction during ischemia was steeper in isolated hearts from Cx43KI32 animals, whereas changes in myocardial impedance were attenuated during ischemia in both transgenic models, suggesting altered cell-to-cell coupling at baseline. In conclusion, both reduction of Cx43 with 4-OHT and replacement of Cx43 by less-conductive Cx32 were arrhythmogenic under normoxia and ischemia-reperfusion, despite no major effects on baseline electrical properties. These results suggest that modifications in gap junction communication silent under normal conditions may be arrhythmogenic during ischemia-reperfusion.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3