An implantable bolus infusion pump for use in freely moving, nontethered rats

Author:

Holschneider D. P.123,Maarek J.-M. I.4,Harimoto J.4,Yang J.1,Scremin O. U.35

Affiliation:

1. Department of Psychiatry and the Behavioral Sciences;

2. Department of Neurology, University of Southern California School of Medicine, Los Angeles 90033;

3. Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles 90073; and

4. Department of Biomedical Engineering, University of Southern California School of Engineering, Los Angeles 90089;

5. Department of Physiology, University of California at Los Angeles School of Medicine, Los Angeles, California 90095

Abstract

One of the current constraints on functional neuroimaging in animals is that to avoid movement artifacts during data acquisition, subjects need to be immobilized, sedated, or anesthetized. Such measures limit the behaviors that can be examined, and introduce the additional variables of stress or anesthetic agents that may confound meaningful interpretation. This study provides a description of the design and characteristics of a self-contained, implantable microbolus infusion pump (MIP) that allows triggering of a bolus injection at a distance in conscious, behaving rats that are not restrained or tethered. The MIP is externally triggered by a pulse of infrared light and allows in vivo bolus drug delivery. We describe application of this technology to the intravenous bolus delivery of iodo[14C]antipyrine in a freely moving animal, followed immediately by lethal injection, rapid removal of the brain, and analysis of regional cerebral blood flow tissue radioactivity with the use of autoradiography. The ability to investigate changes in brain activation in nonrestrained animals makes the MIP a powerful tool for evaluation of complex behaviors.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3