Preemptive conditioning of the swine heart by H11 kinase/Hsp22 provides cardiac protection through inducible nitric oxide synthase

Author:

Chen Li1,Lizano Paulo1,Zhao Xin1,Sui Xiangzhen1,Dhar Sunil K.2,Shen You-Tang1,Vatner Dorothy E.1,Vatner Stephen F.1,Depre Christophe1

Affiliation:

1. Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, New Jersey Medical School and

2. New Jersey Institute of Technology, Newark, New Jersey

Abstract

The second window of ischemic preconditioning (SWOP) provides maximal protection against ischemia through regulation of the inducible nitric oxide synthase (iNOS), yet its application is limited by the inconvenience of the preliminary ischemic stimulus required for prophylaxis. Overexpression of H11 kinase/Hsp22 (Hsp22) in a transgenic mouse model provides cardioprotection against ischemia that is equivalent to that conferred by SWOP. We hypothesized that short-term, prophylactic overexpression of Hsp22 would offer an alternative to SWOP in reducing ischemic damage through a nitric oxide (NO)-dependent mechanism. Adeno-mediated overexpression of Hsp22 was achieved in the area at risk of the left circumflex (Cx) coronary artery in chronically instrumented swine and compared with LacZ controls ( n = 5/group). Hsp22-injected myocardium showed an average fourfold increase in Hsp22 protein expression compared with controls and a doubling in iNOS expression (both P < 0.05). Four days after ischemia-reperfusion, regional wall thickening was reduced by 58 ± 2% in the Hsp22 group vs. 82 ± 7% in the LacZ group, and Hsp22 reduced infarct size by 40% (both P < 0.05 vs. LacZ). Treatment with the NOS inhibitor NG-nitro-l-arginine (l-NNA) before ischemia suppressed the protection induced by Hsp22. In isolated cardiomyocytes, Hsp22 increased iNOS expression through the transcription factors NF-κB and STAT, the same effectors activated by SWOP, and reduced by 60% H2O2-mediated apoptosis, which was also abolished by NOS inhibitors. Therefore, short-term, prophylactic conditioning by Hsp22 provides NO-dependent cardioprotection that reproduces the signaling of SWOP, placing Hsp22 as a potential alternative for preemptive treatment of myocardial ischemia.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3