Optical mapping of atrioventricular node reveals a conduction barrier between atrial and nodal cells

Author:

Choi Bum-Rak1,Salama Guy1

Affiliation:

1. Department of Cell Biology and Physiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261

Abstract

The mechanisms responsible for atrioventricular (AV) delay remain unclear, in part due to the inability to map electrical activity by conventional microelectrode techniques. In this study, voltage-sensitive dyes and imaging techniques were refined to detect action potentials (APs) from the small cells comprising the AV node and to map activation from the “compact” node. Optical APs (124) were recorded from 5 × 5 mm (∼0.5-mm depth) AV zones of perfused rabbit hearts stained with a voltage-sensitive dye. Signals from the node exhibited a set of three spikes; the first and third ( peaks I and III) were coincident with atrial (A) and ventricular (V) electrograms, respectively. The second spike ( peak II) represented the firing of midnodal (N) and/or lower nodal (NH) cell APs as indicated by their small amplitude, propagation pattern, location determined from superimposition of activation maps and histological sections of the node region, dependence on depth of focus, and insensitivity to tetrodotoxin (TTX). AV delays consisted of τ1 (49.5 ± 6.59 ms, 300-ms cycle length), the interval between peaks I and II (perhaps AN to N cells), and τ2 (57.57 ± 5.15 ms), the interval between peaks II and III (N to V cells). The conductance time across the node was 10.33 ± 3.21 ms, indicating an apparent conduction velocity (ΘN) of 0.162 ± 0.02 m/s ( n = 9) that was insensitive to TTX. In contrast, τ1 correlated with changes in AV node delays (measured with surface electrodes) caused by changes in heart rate or perfusion with acetylcholine. The data provide the first maps of activation across the AV node and demonstrate that ΘN is faster than previously presumed. These findings are inconsistent with theories of decremental conduction and prove the existence of a conduction barrier between the atrium and the AV node that is an important determinant of AV node delay.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3