Postnatal changes in contractile time parameters, calcium regulatory proteins, and phosphatases

Author:

Gombosová Iva1,Bokník Peter1,Kirchhefer Uwe1,Knapp Jörg1,Lüss Hartmut1,Müller Frank Ulrich1,Müller Thorsten1,Vahlensieck Ute1,Schmitz Wilhelm1,Bodor Geza S.2,Neumann Joachim1

Affiliation:

1. Institut für Pharmakologie und Toxikologie, Westfälische Wilhelms-Universität, D-48149 Münster, Germany; and

2. Department of Laboratories, Denver Health Medical Center, Denver, Colorado 80204

Abstract

Compared with isolated electrically driven neonatal ventricular preparations, the total time of contraction, the time to peak tension, and the time of relaxation were decreased to ∼50% in adult ventricular preparations. The expression of sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) was increased to 133% at the protein level and to 154% at the mRNA level in adult vs. neonatal ventricular preparations, whereas phospholamban was unchanged at both the protein and mRNA levels. Moreover, Ca2+ uptake was increased to 180% in adult vs. neonatal ventricular preparations. Phospholamban phosphorylation was enhanced in adult vs. neonatal ventricular preparations. In adult ventricular preparations, phosphatase activity was reduced to 53% of neonatal preparations, the protein levels of the immunologically detectable catalytic subunits of protein phosphatase types 1 and 2A were reduced to 28 and 61% of neonatal preparations, respectively, and the mRNA levels of type 1α, 1β, 1γ, 2Aα, and 2Aβ phosphatase isoforms were decreased to 69, 68, 54, 67, and 63%, respectively. We conclude that in the adult rat heart, the shortened time parameters of contraction can be explained by an elevated expression of SERCA. In addition, an increased phosphorylation state of phospholamban due to reduced phosphatase activity may be involved.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3