Mitochondrial ATP-sensitive K+ channels modulate cardiac mitochondrial function

Author:

Holmuhamedov Ekshon L.1,Jovanović Sofija1,Dzeja Petras P.1,Jovanović Aleksandar1,Terzic Andre1

Affiliation:

1. Division of Cardiovascular Diseases, Department of Medicine and Pharmacology, Mayo Clinic, Mayo Foundation, Rochester, Minnesota 55905

Abstract

Discovered in the cardiac sarcolemma, ATP-sensitive K+(KATP) channels have more recently also been identified within the inner mitochondrial membrane. Yet the consequences of mitochondrial KATP channel activation on mitochondrial function remain partially documented. Therefore, we isolated mitochondria from rat hearts and used K+ channel openers to examine the effect of mitochondrial KATPchannel opening on mitochondrial membrane potential, respiration, ATP generation, Ca2+ transport, and matrix volume. From a mitochondrial membrane potential of −180 ± 15 mV, K+ channel openers, pinacidil (100 μM), cromakalim (25 μM), and levcromakalim (20 μM), induced membrane depolarization by 10 ± 7, 25 ± 9, and 24 ± 10 mV, respectively. This effect was abolished by removal of extramitochondrial K+ or application of a KATP channel blocker. K+ channel opener-induced membrane depolarization was associated with an increase in the rate of mitochondrial respiration and a decrease in the rate of mitochondrial ATP synthesis. Furthermore, treatment with a K+ channel opener released Ca2+ from mitochondria preloaded with Ca2+, an effect also dependent on extramitochondrial K+concentration and sensitive to KATP channel blockade. In addition, K+ channel openers, cromakalim and pinacidil, increased matrix volume and released mitochondrial proteins, cytochrome cand adenylate kinase. Thus, in isolated cardiac mitochondria, KATP channel openers depolarized the membrane, accelerated respiration, slowed ATP production, released accumulated Ca2+, produced swelling, and stimulated efflux of intermembrane proteins. These observations provide direct evidence for a role of mitochondrial KATP channels in regulating functions vital for the cardiac mitochondria.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 294 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3