Affiliation:
1. Department of Veterinary and Comparative Anatomy, Pharmacology, and Physiology, and
2. Department of Biological Systems Engineering, Washington State University, Pullman, Washington 99164
Abstract
Experiments were conducted in 10 isolated rabbit hearts at 25°C to test the hypothesis that vibration-induced depression of myocardial contractile function was the result of increased cross-bridge breakage. Small-amplitude sinusoidal changes in left ventricular volume were administered at frequencies of 25, 50, and 76.9 Hz. The resulting pressure response consisted of a depressive response [ΔPd( t), a sustained decrease in pressure that was not at the perturbation frequency] and an in-frequency response [ΔP f ( t), that part at the perturbation frequency]. ΔPd( t) represented the effects of contractile depression. A cross-bridge model was applied to ΔP f ( t) to estimate cross-bridge cycling parameters. Responses were obtained during Ca2+ activation and during Sr2+ activation when the time course of pressure development was slowed by a factor of 3. ΔPd( t) was strongly affected by whether the responses were activated by Ca2+ or by Sr2+. In the Sr2+-activated state, ΔPd( t) declined while pressure was rising and relaxation rate decreased. During Ca2+ and Sr2+ activation, velocity of myofilament sliding was insignificant as a predictor of ΔPd( t) or, when it was significant, participated by reducing ΔPd( t) rather than contributing to its magnitude. Furthermore, there was no difference in cross-bridge cycling rate constants when the Ca2+-activated state was compared with the Sr2+-activated state. An increase in cross-bridge detachment rate constant with volume-induced change in cross-bridge distortion could not be detected. Finally, processes responsible for ΔPd( t) occurred at slower frequencies than those of cross-bridge detachment. Collectively, these results argue against a cross-bridge detachment basis for vibration-induced myocardial depression.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献