Ox-LDL induces apoptosis in human coronary artery endothelial cells: role of PKC, PTK, bcl-2, and Fas

Author:

Li Dayuan1,Yang Baichun1,Mehta Jawahar L.1

Affiliation:

1. Department of Medicine, University of Florida, and Veterans Affairs Medical Center, Gainesville, Florida 32610

Abstract

Oxidized low-density lipoprotein (ox-LDL) plays a critical role in the development of atherosclerosis. Recent studies show that ox-LDL may induce apoptosis of cultured rabbit smooth muscle cells and human macrophages. This study was designed to determine the modulation by ox-LDL of apoptosis in cultured human coronary arterial endothelial cells (HCAEC) during hypoxia-reoxygenation and to determine underlying mechanisms. When HCAEC were ∼85% confluent, the cells were exposed to hypoxia (24 h)-reoxygenation (3 h), native LDL, or ox-LDL. Fragmented DNA end-labeling, DNA laddering, and light and electron microscopy were used to determine changes characteristic of apoptosis. Ox-LDL (20 μg/ml) increased apoptosis during hypoxia-reoxygenation compared with hypoxia-reoxygenation alone ( P < 0.05). Low concentrations of ox-LDL (5 μg/ml) and native LDL (20 μg/ml) under identical conditions had no effect on the degree of apoptosis. Ox-LDL markedly decreased endogenous superoxide dismutase activity and increased lipid peroxidation in HCAEC. The presence of ox-LDL, but not native LDL, in cultured HCAEC resulted in the activation of protein kinase C (PKC) and protein tyrosine kinase (PTK). The specific PKC and PTK inhibitors significantly reduced ox-LDL-mediated apoptosis of HCAEC ( P < 0.05). Hypoxia-reoxygenation significantly increased Fas expression and decreased bcl-2 expression in HCAEC lysate as determined by Western analysis. Ox-LDL further increased Fas expression and decreased bcl-2 expression. These data indicate that ox-LDL enhances hypoxia-reoxygenation-mediated apoptosis in HCAEC. Ox-LDL-mediated apoptosis of HCAEC appears to involve activation of PKC and PTK. In addition, ox-LDL modulates Fas and bcl-2 protein expression in HCAEC. This study also suggests that ox-LDL is more important than native LDL in hypoxia-reoxygenation-induced apoptosis.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3