Transmural heterogeneity of action potentials andI to1 in myocytes isolated from the human right ventricle

Author:

Li Gui-Rong1,Feng Jianlin1,Yue Lixia1,Carrier Michel2

Affiliation:

1. Department of Medicine and

2. Department of Surgery, Montreal Heart Institute and University of Montreal, Montreal, Quebec, Canada H1T 1C8

Abstract

Limited information is available about transmural heterogeneity in cardiac electrophysiology in man. The present study was designed to evaluate heterogeneity of cardiac action potential (AP), transient outward K+ current ( I to1) and inwardly rectifying K+ current ( I K1) in human right ventricle. AP and membrane currents were recorded using whole cell current- and voltage-clamp techniques in myocytes isolated from subepicardial, midmyocardial, and subendocardial layers of the right ventricle of explanted failing human hearts. AP morphology differed among the regional cell types. AP duration (APD) at 0.5–2 Hz was longer in midmyocardial cells (M cells) than in subepicardial and subendocardial cells. At room temperature, observed I to1, on step to +60 mV, was significantly greater in subepicardial (6.9 ± 0.8 pA/pF) and M cells (6.0 ± 1.1 pA/pF) than in subendocardial cells (2.2 ± 0.7 pA/pF, P < 0.01). Slower recovery of I to1 was observed in subendocardial cells. The half-inactivation voltage of I to1 was more negative in subendocardial cells than in M and subepicardial cells. At 36°C, the density of I to1 increased, the time-dependent inactivation and reactivation accelerated, and the frequency-dependent reduction attenuated in all regional cell types. No significant difference was observed in I K1 density among the regional cell types. The results indicate that M cells in humans, as in canines, show the greatest APD and that a gradient of I to1 density is present in the transmural ventricular wall. Therefore, the human right ventricle shows significant transmural heterogeneity in AP morphology and I to1properties.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3