Attenuation of ANG II actions by adenovirus delivery of AT1 receptor antisense in neurons and SMC

Author:

Lu Di1,Yang Hong1,Raizada Mohan K.1

Affiliation:

1. Department of Physiology, University of Florida, Gainesville, Florida 32610

Abstract

Both central and peripheral renin-angiotensin systems (RAS) are important in the development and establishment of hypertension. Thus, introducing genes relevant to RAS into neuronal and vascular smooth muscle (VSM) cells, two major targets for angiotensin (ANG) II action, is a prerequisite in considering a gene therapy approach for the control of ANG-dependent hypertension. In this study, we explored the use of adenoviral (Ad) vector to transfer AT1 receptor antisense cDNA (AT1R-AS) into neuronal and VSM cells with the anticipation of attenuation of ANG II-mediated cellular actions. Incubation of neurons and VSM cells with viral particles containing AT1R-AS (Ad-AT1R-AS) resulted in a robust expression of AT1R-AS in a majority (∼80%) of the cells. The expression was persistent for at least 28 days and was associated with decreases in the immunoreactive AT1 receptor protein and the maximal binding for AT1 receptor in a time- and dose-dependent manner in both cell types. ANG II stimulation of [3H]thymidine incorporation in VSM cells and norepinephrine transporter gene expression in neuronal cells were attenuated by Ad-AT1R-AS infection. Uninfected cells or cells infected with adenovirus particles containing a mutant AT1 receptor sense cDNA showed no effects on either AT1 receptor or on attenuation of ANG II’s cellular affects. These observations show, for the first time, that adenovirus can be used to deliver AT1 receptor mutant sense and antisense cDNAs into two major ANG II target tissues. This consequently influences AT1 receptor-mediated cellular actions of ANG II.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3