Affiliation:
1. Division of Pulmonary and Critical Care Medicine, The Asthma and Allergy Center, The Johns Hopkins Medical Institutions, Baltimore, Maryland 21224; and
2. Department of Anesthesiology, St. Louis University, St. Louis, Missouri 63110
Abstract
We previously found that injection of 15-μm microspheres into the bronchial artery of sheep decreased bronchial artery resistance. This effect was inhibited partially by indomethacin or 8-phenyltheophylline, suggesting that microspheres caused release of a dilating prostaglandin and adenosine. To identify the prostaglandin and confirm adenosine release, we perfused the bronchial artery in anesthetized sheep. In 12 sheep, bronchial artery blood samples were obtained before and after the infusion of 1 × 106microspheres or microsphere diluent into the bronchial artery. Microspheres, but not diluent, decreased bronchial artery resistance by 40% and increased bronchial artery plasma 6-ketoprostaglandin F1α (194.7 ± 45.0 to 496.5 ± 101.3 pg/ml), the stable metabolite of prostacyclin, and prostaglandin (PG) F2α (28.1 ± 4.4 to 46.2 ± 9.7 pg/ml). There were no changes in PGD2, PGE2, thromboxane B2, adenosine, inosine, or hypoxanthine. Pretreatment with dipyridamole, an adenosine uptake inhibitor, did not affect bronchial artery nucleoside concentrations ( n = 7). Microsphere-induced vasodilation was not enhanced by dipyridamole ( n = 9) and was not inhibited by either the adenosine receptor antagonist xanthine amine congener ( n = 4) or the nitric oxide (NO) synthase inhibitor N G-monomethyl-l-arginine ( n = 8). These results do not support a role for either adenosine or NO and suggest that microspheres caused bronchial artery vasodilation through release of prostacylin and an unidentified vasodilator.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献