Dissociation between volume blood flow and laser-Doppler signal from rat muscle during changes in vascular tone

Author:

Kuznetsova Larisa V.1,Tomasek Nicole2,Sigurdsson Gisli H.2,Banic Andrej3,Erni Dominique3,Wheatley Anthony M.1

Affiliation:

1. Departments of Visceral and Transplantation Surgery,

2. Anesthesia and Intensive Care, and

3. Plastic Surgery, University of Berne, Inselspital, CH-3010 Berne, Switzerland

Abstract

Although the laser-Doppler flowmetry (LDF) signal from skeletal muscle has been shown to provide a good measure of blood flow under some conditions, its behavior during administration of vasoactive substances has never been addressed. The aims of this study were to compare 1) changes in LDF signal with those in total muscle blood flow measured with radioactive microspheres after ganglionic blockade (chlorisondamine) and during administration of angiotensin II (ANG II), phenylephrine (PE), and isoproterenol (Iso) and 2) changes in vascular resistance estimated by the two techniques. The LDF signal from the biceps femoris muscle was investigated in anesthetized male Wistar rats. Ganglionic blockade led to a significant ( P < 0.05) fall in mean arterial pressure (MAP) [medians (lower, upper quartiles): 78 (72, 83) vs. 127 (114, 138) mmHg under basal conditions], muscle blood flow (MBF, microsphere technique; 61%), and the LDF signal (29%). Muscle vascular resistance (MVR = MAP/MBF) was increased (64%, P < 0.05), but vascular resistance estimated as MAP/LDF signal (MVRLDF) was unchanged. During ANG II and PE infusions, MAP rose ( P< 0.05) to 178 (155, 194) and 127 (124, 142) mmHg, respectively; MBF did not change compared with the preinfusion (postganglionic blockade) level and remained significantly ( P< 0.05) lower than baseline, whereas the LDF signal increased up to a level not different from baseline. MVR rose and was significantly ( P < 0.05) higher than baseline, whereas MVRLDF did not differ significantly from baseline. During Iso infusion, MAP fell [58 (56, 60) vs. 94 (92, 102) mmHg, P < 0.05], the LDF signal was reduced (49%, P < 0.05) despite a large increase in MBF (139%, P < 0.05), and MVR fell (74%, P < 0.05), whereas MVRLDF did not change vs. preinfusion level. Our results suggest that 1) changes in the LDF signal from muscle may not correlate with changes in total muscle blood flow measured by the microsphere technique during infusion of vasoactive substances and 2) the use of LDF data for estimation of MVR during changes in vascular tone in rat skeletal muscle is probably not appropriate.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3