5,6-Epoxyeicosatrienoic acid reduces increases in pulmonary vascular resistance in the dog

Author:

Stephenson Alan H.1,Sprague Randy S.1,Lonigro Andrew J.1

Affiliation:

1. Departments of Pharmacological and Physiological Science and Internal Medicine, St. Louis University School of Medicine, St. Louis, Missouri 63104

Abstract

We recently reported that canine pulmonary microsomes metabolize arachidonic acid to all four regioisomeric epoxyeicosatrienoic acids (EET). 5,6-EET dilates blood vessels in several nonpulmonary vascular beds, often in a cyclooxygenase-dependent manner. The present study was designed to determine whether 5,6-EET can decrease pulmonary vascular resistance (PVR) in the intact pulmonary circulation. In isolated canine lungs perfused with physiological salt solution, a constant infusion of U-46619 (3.28 ± 0.99 nmol/min) increased PVR 62.1 ± 4.5%. Administration of 5,6-EET (10−5 M) into the perfusate reduced the U-46619-mediated increase in PVR by 23.6 ± 6.1%. These effects of U-46619 and 5,6-EET were limited to changes in resistance solely in the pulmonary venous segment. In contrast, venous as well as arterial segmental resistances were increased in 5-hydroxytryptamine (5-HT)-treated lungs. However, in the latter instance, 5,6-EET reduced arterial but not venous segmental resistance. 5,6-EET increased pulmonary PGI2 synthesis from 70.5 ± 18.4 to 675.9 ± 125.4 ng/min. In the presence of indomethacin (10−4 M), 5,6-EET did not increase PGI2 synthesis nor did it decrease U-46619- or 5-HT-mediated increases in PVR. In canine intrapulmonary vessels, 5,6-EET decreased active tension in veins contracted with U-46619. 5,6-EET decreased active tension in arteries but not veins contracted with 5-HT, consistent with results in the perfused lungs. These results demonstrate that 5,6-EET is a vasodilator in the intact pulmonary circulation. Its dilator activity depends on the constrictor agent present, the segmental resistance, and cyclooxygenase activity.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3