Structural adaptation and stability of microvascular networks: theory and simulations

Author:

Pries A. R.1,Secomb T. W.2,Gaehtgens P.3

Affiliation:

1. Deutsches Herzzentrum Berlin, D-13353 Berlin, Germany;

2. Department of Physiology, University of Arizona, Tucson, Arizona 85724; and

3. Department of Physiology, Freie Universität Berlin, D-14195 Berlin, Germany

Abstract

A theoretical model was developed to simulate long-term changes of vessel diameters during structural adaptation of microvascular networks in response to tissue needs. The diameter of each vascular segment was assumed to change with time in response to four local stimuli: endothelial wall shear stress (τw), intravascular pressure (P), a flow-dependent metabolic stimulus (M), and a stimulus conducted from distal to proximal segments along vascular walls (C). Increases in τw, M, or C or decreases in P were assumed to stimulate diameter increases. Hemodynamic quantities were estimated using a mathematical model of network flow. Simulations were continued until equilibrium states were reached in which the stimuli were in balance. Predictions were compared with data from intravital microscopy of the rat mesentery, including topological position, diameter, length, and flow velocity for each segment of complete networks. Stable equilibrium states, with realistic distributions of velocities and diameters, were achieved only when all four stimuli were included. According to the model, responses to τwand P ensure that diameters are smaller in peripheral than in proximal segments and are larger in venules than in corresponding arterioles, whereas M prevents collapse of networks to single pathways and C suppresses generation of large proximal shunts.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 91 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3