An increase in intracellular [Na+] during Ca2+ depletion is not related to Ca2+ paradox damage in rat hearts

Author:

Jansen Maurits A.1,Van Echteld Cees J. A.1,Ruigrok Tom J. C.1

Affiliation:

1. Department of Cardiology, Heart Lung Institute, University Hospital, 3508 GA Utrecht; and Interuniversity Cardiology Institute of The Netherlands, 3501 DG Utrecht, The Netherlands

Abstract

Ca2+paradox damage has been suggested to be determined by Na+ entry during Ca2+ depletion and exchange of Na+ for Ca2+ during Ca2+ repletion. With the use of23Na nuclear magnetic resonance, we previously observed a Ca2+ paradox without a prior Na+ increase. We have now demonstrated a Na+ increase during Ca2+ and Mg2+ depletion without the occurrence of the Ca2+ paradox during Ca2+ repletion. Isolated rat hearts were perfused for 20 min with a Ca2+-free or a Ca2+- and Mg2+-free (Ca2+/Mg2+-free) solution under hypothermic conditions (20 and 25°C). Intracellular Na+ concentration ([Na+]i) increased from 11.9 ± 1.2 to 26.9 ± 5.8 mM ( P < 0.001) during Ca2+/Mg2+-free perfusion at 20°C, whereas no significant change in [Na+]ioccurred during 20 min of Ca2+-free perfusion at 20°C. In addition, we confirmed that [Na+]idid not change significantly during 20 min of normothermic Ca2+-free perfusion. Creatine kinase release during normothermic Ca2+ repletion in the 20°C groups was ∼10% and in the 25°C groups 75% of the release in the normothermia group. Recovery of rate-pressure product was ∼50% in the 20°C groups versus 0% in the normothermia group. In conclusion, hypothermic Ca2+/Mg2+-free perfusion results in a significant increase of [Na+]i, which does not contribute to the extent of the Ca2+ paradox on normothermic Ca2+ repletion.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cardiac basal metabolism: energetic cost of calcium withdrawal in the adult rat heart;Acta Physiologica;2010-03

2. Intracellular Po2kinetics at different contraction frequencies inXenopussingle skeletal muscle fibers;Journal of Applied Physiology;2007-04

3. Implication of CO inactivation on myoglobin function;American Journal of Physiology-Cell Physiology;2006-06

4. Stimulation characteristics that determine arteriolar dilation in skeletal muscle;American Journal of Physiology-Regulatory, Integrative and Comparative Physiology;2005-08

5. Control of respiration and bioenergetics during muscle contraction;American Journal of Physiology-Cell Physiology;2005-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3