Affiliation:
1. Department of Physiology, Eastern Virginia Medical School, Norfolk, Virginia 23501; and
2. Department of Surgery, Indiana University Medical Center, Indianapolis, Indiana 46202
Abstract
This study was designed to characterize in vivo arterial remodeling of male Wistar rat small mesenteric arteries exposed to varying levels of elevated blood flow in the presence of normal arterial pressure. Through a series of arterial ligations, respective ileal artery and second-order branch blood flows acutely increased ∼36 and ∼170% over basal levels. Their respective diameters increased 12 and 38% and their wall area increased 58 and 120% in a time-dependent fashion between 1 and 7 days postligation compared with same-animal control vessels. Medial extracellular connective tissue increased concomitantly with medial wall hypertrophy. Immunostaining for proliferating cell nuclear antigen and nuclear profile analyses suggests that both smooth muscle and endothelial cell hyperplasia contribute to flow-induced vascular remodeling. The initial stimulus in this model is flow-mediated shear stress, with possible augmentation by hoop stress, which is increased ∼7% by the resultant vasodilation. Stable wall thickness-to-lumen diameter ratios at 1, 3, and 7 days, however, suggest chronic hoop stress is tightly regulated and remains constant. The model described herein allows analyses of two arteries with different degrees of flow elevation within the same animal and demonstrates that the magnitude of vessel remodeling in vivo is directly dependent on the duration of flow elevation after abrupt arterial occlusion.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
88 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献