Alterations in cardiac SR Ca2+-release channels during development of heart failure in cardiomyopathic hamsters

Author:

Ueyama Takeshi1,Ohkusa Tomoko1,Hisamatsu Yuji1,Nakamura Yasuma1,Yamamoto Takeshi1,Yano Masafumi1,Matsuzaki Masunori1

Affiliation:

1. Second Department of Internal Medicine, Yamaguchi University School of Medicine, Ube, Yamaguchi 755, Japan

Abstract

The cardiomyopathic Syrian hamster develops a progressive cardiomyopathy characterized by cellular necrosis, hypertrophy, cardiac dilatation, and congestive heart failure. This study aimed to identify alterations in cardiac mechanical function and in the cellular content of sarcoplasmic reticulum (SR) Ca2+-release channels (ryanodine receptors, RyR) in the heart of the UM-X7.1 cardiomyopathic hamster during the development of heart failure. Experimental and healthy control hamsters were examined at 8, 18, and 28 wk of age. The UM-X7.1 hamsters had developed left ventricular (LV) hypertrophy at 8 wk and a marked LV dilatation at 18–28 wk. During the latter stage, the UM-X7.1 hamster hearts showed global hypokinesis. Equilibrium binding assays of high-affinity sites for [3H]ryanodine were performed in ventricular homogenate preparations. There was no significant difference between the two groups in the maximum number of [3H]ryanodine binding sites (Bmax) at either 8 or 18 wk of age, although the cardiac pump function was impaired in UM-X7.1 hamsters at 18 wk of age. By 28 wk, Bmax was significantly lower in the UM-X7.1 hamsters. Quantitative immunoblot assay revealed that the content of RyR protein in cardiomyopathic hearts, which was increased at the early stage, declined to below normal as heart failure advanced. These results suggest that the number of RyR in the UM-X7.1 cardiomyopathic hamsters was preserved at both the hypertrophic and early stages of heart failure with a possibly compensatory increase in the level of protein expression, although the cardiac function already showed a tendency to be impaired.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3