Affiliation:
1. Institute for Exercise and Environmental Medicine, Presbyterian Hospital of Dallas, Dallas 75231; and The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75235
Abstract
To test the hypothesis that spontaneous changes in cerebral blood flow are primarily induced by changes in arterial pressure and that cerebral autoregulation is a frequency-dependent phenomenon, we measured mean arterial pressure in the finger and mean blood flow velocity in the middle cerebral artery (V˙MCA) during supine rest and acute hypotension induced by thigh cuff deflation in 10 healthy subjects. Transfer function gain, phase, and coherence function between changes in arterial pressure andV˙MCA were estimated using the Welch method. The impulse response function, calculated as the inverse Fourier transform of this transfer function, enabled the calculation of transient changes inV˙MCA during acute hypotension, which was compared with the directly measured change in V˙MCA during thigh cuff deflation. Beat-to-beat changes inV˙MCA occurred simultaneously with changes in arterial pressure, and the autospectrum of V˙MCA showed characteristics similar to arterial pressure. Transfer gain increased substantially with increasing frequency from 0.07 to 0.20 Hz in association with a gradual decrease in phase. The coherence function was >0.5 in the frequency range of 0.07–0.30 Hz and <0.5 at <0.07 Hz. Furthermore, the predicted change inV˙MCA was similar to the measuredV˙MCA during thigh cuff deflation. These data suggest that spontaneous changes inV˙MCA that occur at the frequency range of 0.07–0.30 Hz are related strongly to changes in arterial pressure and, furthermore, that short-term regulation of cerebral blood flow in response to changes in arterial pressure can be modeled by a transfer function with the quality of a high-pass filter in the frequency range of 0.07–0.30 Hz.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
709 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献