Energy provision from glycogen, glucose, and fatty acids on adrenergic stimulation of isolated working rat hearts

Author:

Goodwin Gary W.1,Ahmad Faisal1,Doenst Torsten1,Taegtmeyer Heinrich1

Affiliation:

1. Division of Cardiology, Department of Internal Medicine, The University of Texas-Houston Medical School, Houston, Texas 77030

Abstract

We postulated that glycogen is a significant energy substrate compared with fatty acids and glucose in response to adrenergic stimulation of working rat hearts. Oxidation rates were determined at 1-min intervals by release of3H2O from [9,10-3H]oleate (0.4 mM, 1% albumin) and14CO2from exogenous [U-14C]glucose (5 mM) or, by a pulse-chase method, from [14C]glycogen. We estimated the 14C enrichment of glycogen metabolized at each time point to determine true rates of glycogen use. Based on the pattern of glycogen enrichment over time, glycogenolysis did not exhibit a high degree of preference for newly synthesized glycogen. Epinephrine (1 μM) increased contractile performance 86% but did not stimulate oleate oxidation. The increased energy demand was supplied by carbohydrates, initially by a burst of glycogenolysis (contributing 35% to total ATP synthesis for 5 min) and followed by delayed increase in the use of exogenous glucose (eventually contributing 29% to ATP synthesis). On the basis of the release of14CO2and [14C]lactate specifically from glucose or glycogen, we found that a larger portion of glycogen was oxidized compared with exogenous glucose, augmenting the yield of ATP from glycogen. Thus the heart responds to an acute increase in energy demand by selective oxidation of glycogen.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 88 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3