Water channel proteins in rat cardiac myocyte caveolae: osmolarity-dependent reversible internalization

Author:

Page Ernest1,Winterfield Jeffrey1,Goings Gwendolyn1,Bastawrous Amir1,Upshaw-Earley Judy1,Doyle Donald1

Affiliation:

1. Departments of Medicine and Pharmacological and Physiological Sciences, University of Chicago, Chicago, Illinois 60637

Abstract

We show by confocal immunofluorescence microscopy that the water channel protein aquaporin-1, not previously identified within cardiomyocytes, localizes at 20 and 37°C to rat cardiomyocyte sarcolemmal caveolar membrane and subsarcolemmal cytoplasm of primary atrial myocyte cultures, dissociated atrial and ventricular myocytes, and in situ cardiomyocytes of atrial and ventricular frozen sections. Confocal immunofluorescence microscopy shows that the normal in situ colocalization of the quasi-muscle-specific caveolar coating protein caveolin-3 with aquaporin-1 is reversibly disrupted by exposing in situ atrial or ventricular myocytes to physiological saline made hypertonic by adding 150 mM sucrose or 75 mM NaCl to isotonic physiological saline. This causes caveolae to close off from the interstitium and swell, while aquaporin-1 is internalized reversibly. At 4°C aquaporin-1 does not colocalize with caveolin-3. We suggest that 1) in vivo, under near-isotonic conditions, caveolae may alternate frequently between brief open and closed-off states; 2) aquaporin-1-caveolin-3 colocalization may be energy dependent; and 3) while closed off from the interstitium, each caveola transiently functions as an osmometer that experiences, monitors, and reacts to net water flow from or into the subcaveolar cytosol of the myocyte.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3