Aortic valve sclerosis in mice deficient in endothelial nitric oxide synthase

Author:

El Accaoui Ramzi N.1,Gould Sarah T.2,Hajj Georges P.1,Chu Yi1,Davis Melissa K.1,Kraft Diane C.1,Lund Donald D.1,Brooks Robert M.1,Doshi Hardik1,Zimmerman Kathy A.1,Kutschke William1,Anseth Kristi S.234,Heistad Donald D.135,Weiss Robert M.1

Affiliation:

1. Division of Cardiovascular Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa;

2. Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado;

3. Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado;

4. Howard Hughes Medical Institute, University of Colorado, Boulder, Colorado

5. Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa;

Abstract

Risk factors for fibrocalcific aortic valve disease (FCAVD) are associated with systemic decreases in bioavailability of endothelium-derived nitric oxide (EDNO). In patients with bicuspid aortic valve (BAV), vascular expression of endothelial nitric oxide synthase (eNOS) is decreased, and eNOS−/− mice have increased prevalence of BAV. The goal of this study was to test the hypotheses that EDNO attenuates profibrotic actions of valve interstitial cells (VICs) in vitro and that EDNO deficiency accelerates development of FCAVD in vivo. As a result of the study, coculture of VICs with aortic valve endothelial cells (vlvECs) significantly decreased VIC activation, a critical early phase of FCAVD. Inhibition of VIC activation by vlvECs was attenuated by NG-nitro-l-arginine methyl ester or indomethacin. Coculture with vlvECs attenuated VIC expression of matrix metalloproteinase-9, which depended on stiffness of the culture matrix. Coculture with vlvECs preferentially inhibited collagen-3, compared with collagen-1, gene expression. BAV occurred in 30% of eNOS−/− mice. At age 6 mo, collagen was increased in both bicuspid and trileaflet eNOS−/− aortic valves, compared with wild-type valves. At 18 mo, total collagen was similar in eNOS−/− and wild-type mice, but collagen-3 was preferentially increased in eNOS−/− mice. Calcification and apoptosis were significantly increased in BAV of eNOS−/− mice at ages 6 and 18 mo. Remarkably, these histological changes were not accompanied by physiologically significant valve stenosis or regurgitation. In conclusion, coculture with vlvECs inhibits specific profibrotic VIC processes. In vivo, eNOS deficiency produces fibrosis in both trileaflet and BAVs but produces calcification only in BAVs.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3