Author:
Harrington Louise S.,Carrier Martin J.,Gallagher Nicola,Gilroy Derek,Garland Chris J.,Mitchell Jane A.
Abstract
Although the endothelium co-generates both nitric oxide (NO) and endothelium-derived hyperpolarizing factor (EDHF), the relative contribution from each vasodilator is not clear. In studies where the endothelium is stimulated acutely, EDHF responses predominate in small arteries. However, the temporal relationship between endothelial-derived NO and EDHF over more prolonged periods is unclear but of major physiological importance. Here we have used a classical pharmacological approach to show that EDHF is released transiently compared with NO. Acetylcholine (3 × 10−6 mol/l) dilated second- and/or third-order mesenteric arteries for prolonged periods of up to 1 h, an effect that was reversed fully and immediately by the subsequent addition of l-NAME (10−3 mol/l) but not TRAM-34 (10−6 mol/l) plus apamin (5 × 10−7 mol/l). When vessels were pretreated with l-NAME, acetylcholine induced relatively transient dilator responses (declining over ∼5 min), and vessels were sensitive to TRAM-34 plus apamin. When measured in parallel, the dilator effects of acetylcholine outlasted the smooth muscle hyperpolarization. However, in the presence of l-NAME, vasodilatation and hyperpolarization followed an identical time course. In vessels from NOSIII−/− mice, acetylcholine induced small but detectable dilator responses that were transient in duration and blocked by TRAM-34 plus apamin. EDHF responses in these mouse arteries were inhibited by an intracellular calcium blocker, TMB-8, and the phospholipase A2 inhibitor AACOCF3, suggesting a role for lipid metabolites. These data show for the first time that EDHF is released transiently, whereas endothelial-derived NO is released in a sustained manner.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献