Remodeling of the peripheral cardiac conduction system in response to pressure overload

Author:

Harris Brett S.1,Baicu Catalin F.2,Haghshenas Nicole1,Kasiganesan Harinath2,Scholz Dimitri3,Rackley Mary S.2,Miquerol Lucile4,Gros Daniel4,Mukherjee Rupak5,O'Brien Terrence X.126

Affiliation:

1. Departments of 1Regenerative Medicine and Cell Biology,

2. Medicine, and

3. UCD Conway, Dublin, Ireland;

4. Université de la Méditerranée, Marseille, France; and

5. Cardiothoracic Surgery, Medical University of South Carolina, Charleston, South Carolina;

6. Ralph H. Johnson Veterans Administration Medical Center, Charleston, South Carolina

Abstract

How chronic pressure overload affects the Purkinje fibers of the ventricular peripheral conduction system (PCS) is not known. Here, we used a connexin (Cx)40 knockout/enhanced green fluorescent protein knockin transgenic mouse model to specifically label the PCS. We hypothesized that the subendocardially located PCS would remodel after chronic pressure overload and therefore analyzed cell size, markers of hypertrophy, and PCS-specific Cx and ion channel expression patterns. Left ventricular hypertrophy with preserved systolic function was induced by 30 days of surgical transaortic constriction. After transaortic constriction, we observed that PCS cardiomyocytes hypertrophied by 23% ( P < 0.05) and that microdissected PCS tissue exhibited upregulated markers of hypertrophy. PCS cardiomyocytes showed a 98% increase in the number of Cx40-positive gap junction particles, with an associated twofold increase in gene expression ( P < 0.05). We also identified a 50% reduction in Cx43 gap junction particles located at the interface between PCS cardiomyocytes and the working cardiomyocyte. In addition, we measured a fourfold increase of an ion channel, hyperpolarization-activated cyclic nucleotide-gated channel (HCN)4, throughout the PCS ( P < 0.05). As a direct consequence of PCS remodeling, we found that pressure-overloaded hearts exhibited marked changes in ventricular activation patterns during normal sinus rhythm. These novel findings characterize PCS cardiomyocyte remodeling after chronic pressure overload. We identified significant hypertrophic growth accompanied by modified expression of Cx40, Cx43, and HCN4 within PCS cardiomyocytes. We found that a functional outcome of these changes is a failure of the PCS to activate the ventricular myocardium normally. Our findings provide a proof of concept that pressure overload induces specific cellular changes, not just within the working myocardium but also within the specialized PCS.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3