Combined NO and PG inhibition augments α-adrenergic vasoconstriction in contracting human skeletal muscle

Author:

Dinenno Frank A.,Joyner Michael J.

Abstract

Sympathetic α-adrenergic vasoconstrictor responses are blunted in the vascular beds of contracting muscle (functional sympatholysis). We tested the hypothesis that combined inhibition of nitric oxide (NO) and prostaglandins (PGs) restores sympathetic vasoconstriction in contracting human muscle. We measured forearm blood flow via Doppler ultrasound and calculated the reduction in forearm vascular conductance in response to α-adrenergic receptor stimulation during rhythmic handgrip exercise (6.4 kg) and during a control nonexercise vasodilator condition (using intra-arterial adenosine) before and after combined local inhibition of NO synthase (NOS; via NG-nitro-l-arginine methyl ester) and cyclooxygenase (via ketorolac) in healthy men. Before combined inhibition of NO and PGs, the forearm vasoconstrictor responses to intra-arterial tyramine (which evoked endogenous noradrenaline release), phenylephrine (a selective α1-agonist), and clonidine (an α2-agonist) were significantly blunted during exercise compared with adenosine treatment. After combined inhibition of NO and PGs, the vasoconstrictor responses to all α-adrenergic receptor stimuli were augmented by ∼10% in contracting muscle ( P < 0.05), whereas the responses to phenylephrine and clonidine were also augmented by ∼10% during passive vasodilation in resting muscle ( P < 0.05). In six additional subjects, PG inhibition alone did not alter the vasoconstrictor responses in resting or contracting muscles. Thus in light of our previous findings, it appears that inhibition of either NO or PGs alone does not affect functional sympatholysis in healthy humans. However, the results from the present study indicate that combined inhibition of NO and PGs augments α-adrenergic vasoconstriction in contracting muscle but does not completely restore the vasoconstrictor responses compared with those observed during passive vasodilation in resting muscle.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3