Thyroid hormone downregulates the expression and function of sarcoplasmic reticulum-associated CaM kinase II in the rabbit heart

Author:

Jiang Mao,Xu Ande,Narayanan Njanoor

Abstract

Phosphorylation of sarcoplasmic reticulum (SR) Ca2+-cycling proteins by a membrane-associated Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) is a well-documented physiological mechanism for regulation of transmembrane Ca2+fluxes and the cardiomyocyte contraction-relaxation cycle. The present study investigated the effects of l-thyroxine-induced hyperthyroidism on protein expression of SR CaM kinase II and its substrates, endogenous CaM kinase II-mediated SR protein phosphorylation, and SR Ca2+pump function in the rabbit heart. Membrane vesicles enriched in junctional SR (JSR) or longitudinal SR (LSR) isolated from euthyroid and hyperthyroid rabbit hearts were utilized. Endogenous CaM kinase II-mediated phosphorylation of ryanodine receptor-Ca2+release channel (RyR-CRC), Ca2+-ATPase, and phospholamban (PLN) was significantly lower (30–70%) in JSR and LSR vesicles from hyperthyroid than from euthyroid rabbit heart. Western immunoblotting analysis revealed significantly higher (∼40%) levels of sarco(endo)plasmic reticulum Ca2+-ATPase isoform 2 (SERCA2) in JSR, but not in LSR, from hyperthyroid than from euthyroid rabbit heart. Maximal velocity of Ca2+uptake was significantly increased in JSR (130%) and LSR (50%) from hyperthyroid compared with euthyroid rabbit hearts. Apparent affinity of the Ca2+-ATPase for Ca2+did not differ between the two groups. Protein levels of PLN and CaM kinase II were significantly lower (30–40%) in JSR, LSR, and ventricular tissue homogenates from hyperthyroid rabbit heart. These findings demonstrate selective downregulation of expression and function of CaM kinase II in hyperthyroid rabbit heart in the face of upregulated expression and function of SERCA2 predominantly in the JSR compartment.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3