Application of an isolated heart model to investigate blood-oxygen delivery

Author:

Rand P. W.,Nelson C. V.,Lacombe E. H.,Barker N. D.,Pirone L. A.

Abstract

To avoid the compensatory hemodynamic responses, which have limited interpretation of hemoglobin-oxygen affinity modifications in animal experimentation, an isolated blood-perfused rabbit heart model providing metabolic, functional, and vectorcardiographic measurements has been developed. Fixed-flow perfusions of unchanged or affinity-modified red blood cell suspensions were carried out to assess the benefits of high affinity during hypoxic hypoxia and of low affinity during posthypoxic recovery. Using fully saturated suspensions, the influence of affinity level during restricted flow and reperfusion was also studied. Higher myocardial oxygen consumption (MVO2) was associated with high-affinity blood during mild hypoxia and low-affinity blood during posthypoxic recovery. At low flows, heart rate and MVO2 tended to be lower in high-affinity perfusions, and to recover more completely during low-affinity reperfusions. Ventricular function, vectorcardiographic patterns, and lactate levels were affected by hypoxia and ischemia, but not by level of affinity. The relevance of these observations to the therapeutic potential of hemoglobin-oxygen affinity modification is discussed.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Independent role of arterial O2 tension in local control of coronary blood flow;American Journal of Physiology-Heart and Circulatory Physiology;1990-05-01

2. Dipole moment ofin vivo and isolated perfused rabbit hearts;Annals of Biomedical Engineering;1989-07

3. Coronary response to large decreases of hemoglobin-O2 affinity in isolated rat heart;American Journal of Physiology-Heart and Circulatory Physiology;1985-12-01

4. Effect of erythrocyte storage and oxyhemoglobin affinity changes on cardiac function;American Journal of Physiology-Heart and Circulatory Physiology;1985-04-01

5. O2 reserve of left ventricle of isolated, saline-perfused rabbit heart;American Journal of Physiology-Heart and Circulatory Physiology;1984-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3