Microvascular myogenic reaction in the wing of the intact unanesthetized bat

Author:

Bouskela E.,Wiederhielm C. A.

Abstract

Microvascular dimension and flow responses to stepwise changes in arterial and venous pressures, ranging from zero to +100 mmHg and zero to -75 mmHg have been recorded. Observations were made in arterioles, terminal arterioles, and precapillary sphincters in the wing web of intact, unanesthetized bats. The results show for all categories of vessels that with reduced transmural pressures there is a progressive increase in mean diameter and a decrease in rhythmic vasomotion rate. Flow changes are variable. For elevated transmural pressures there is a vasoconstriction with drastic flow reduction that is inconsistent with metabolic control. However, after prolonged elevation of pressure there is a progressive increase in flow, suggesting a "metabolic escape". Computed wall tension remains reasonably constant for a wide range of transmural pressures, suggesting that wall tension may be the controlled variable. These findings support the hypothesis of a myogenic reaction as a mechanism for maintenance of basal vascular tone in the intact unanesthetized bat.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Vascular mechanotransduction;Physiological Reviews;2023-04-01

2. Advanced Maternal Age Impairs Uterine Artery Adaptations to Pregnancy in Rats;International Journal of Molecular Sciences;2022-08-16

3. Hemorrhagic Shock and the Microvasculature;Comprehensive Physiology;2017-12-12

4. Bone hemodynamic responses to changes in external pressure;Bone;2013-02

5. Blood flow augmentation by intrinsic venular contraction in vivo;American Journal of Physiology-Regulatory, Integrative and Comparative Physiology;2012-06-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3