β1-Adrenoreceptor activation contributes to ischemia-reperfusion damage as well as playing a role in ischemic preconditioning

Author:

Spear Joseph F.,Prabu Subbuswamy K.,Galati Domenico,Raza Haider,Anandatheerthavarada Hindupur K.,Avadhani Narayan G.

Abstract

Protein kinase A (PKA) activation has been implicated in early-phase ischemic preconditioning. We recently found that during ischemia PKA activation causes inactivation of cytochrome- c oxidase (CcO) and contributes to myocardial damage due to ischemia-reperfusion. It may be that β-adrenergic stimulation during ischemia via endogenous catecholamine release activates PKA. Thus β-adrenergic stimulation may mediate both myocardial protection and damage during ischemia. The present studies were designed to determine the role of the β1-adrenergic receptor (β1-AR) in myocardial ischemic damage and ischemic preconditioning. Langendorff-perfused rabbit hearts underwent 30-min ischemia by anterior coronary artery ligation followed by 2-h reperfusion. Occlusion-reperfusion damage was evaluated by delineating the nonperfused volume of myocardium at risk and volume of myocardial necrosis after 2-h reperfusion. In some hearts ischemic preconditioning was accomplished by two 5-min episodes of global low-flow ischemia separated by 10 min before coronary occlusion-reperfusion. Orthogonal electrocardiograms were recorded, and coronary flow was monitored by a drip count. Three hearts from each experimental group were used to determine mitochondrial CcO and aconitase activities. Two-hour reperfusion after occlusion caused an additional decrease in CcO activity vs. that after 30-min occlusion alone. Blocking the β1-AR during occlusion-reperfusion reversed CcO activity depression and preserved myocardium at risk for necrosis. Similarly, mitochondrial aconitase activity exhibited a parallel response after occlusion-reperfusion as well as for the other interventions. Furthermore, classic ischemic preconditioning had no effect on CcO depression. However, blocking the β1-AR during preconditioning eliminated the cardioprotection. If the β1-AR was blocked after preconditioning, the myocardium was preserved. Interestingly, in both of the latter cases the depression in CcO activity was reversed. Thus the β1-AR plays a dual role in myocardial ischemic damage. Our findings may lead to therapeutic strategies for preserving myocardium at risk for infarction, especially in coronary reperfusion intervention.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3