Lysozyme, a mediator of sepsis, impairs the cardiac neural adrenergic response by nonendothelial release of NO and inhibitory G protein signaling

Author:

Mink Steven N.,Cheng Zhao-Qin,Bose Ratna,Jacobs Hans,Kasian Krika,Roberts Diane E.,Santos-Martinez Luis E.,Light R. Bruce

Abstract

We previously showed that lysozyme (Lzm-S), derived from leukocytes, caused myocardial depression in canine sepsis by binding to the endocardial endothelium to release nitric oxide (NO). NO then diffuses to adjacent myocytes to activate the cGMP pathway. In a canine right ventricular trabecular (RVT) preparation, Lzm-S also decreased the inotropic response to field stimulation (FSR) during which the sympathetic and parasympathetic nerves were simulated to measure the adrenergic response. In the present study, we determined whether the pathway by which Lzm-S decreased FSR was different from the pathway by which Lzm-S reduced steady-state (SS) contraction. Furthermore, we determined whether the decrease in FSR was due to a decrease in sympathetic stimulation or enhanced parasympathetic signaling. In the RVT preparation, we found that the inhibitory effect of Lzm-S on FSR was prevented by NO synthase (NOS) inhibitors. A cGMP inhibitor also blocked the depressant activity of Lzm-S. However, in contrast to the Lzm-S-induced decline in SS contraction, chemical removal of the endocardial endothelium by Triton X-100 to eliminate endothelial NO release did not prevent the decrease in FSR. An inhibitory G protein was involved in the effect of Lzm-S, since FSR could be restored by treatment with pertussis toxin. Atropine prevented the Lzm-S-induced decline in FSR, whereas β1- and β2-adrenoceptor function was not impaired by Lzm-S. These results indicate that the Lzm-S-induced decrease in FSR results from a nonendothelial release of NO. NO then acts through inhibitory G protein to enhance parasympathetic signaling.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Reference38 articles.

1. Nitric oxide synthases: structure, function and inhibition

2. Septic shock

3. Anonymous. Nitric oxide synthase (iNOS, bNOS, eNOS) inhibitors. In: Calbiochem Inhibitor Source Book. San Diego, CA: Calbiochem, 2004, p. 73.

4. Role of the Endocardial Endothelium in the Negative Inotropic Effects of Thiopental

5. Blinks JR. Field stimulation as a means of effecting the graded release of autonomic transmitters in isolated heart muscle. J Pharmacol Exp Ther 151: 221–235, 1966.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3