The benefit of medium-chain triglyceride therapy on the cardiac function of SHRs is associated with a reversal of metabolic and signaling alterations

Author:

Iemitsu Motoyuki,Shimojo Nobutake,Maeda Seiji,Irukayama-Tomobe Yoko,Sakai Satoshi,Ohkubo Takeshi,Tanaka Yukihisa,Miyauchi Takashi

Abstract

The spontaneously hypertensive rat (SHR) is a model of cardiomyopathy that displays a genetic defect in cardiac fatty acid (FA) translocase/CD36, a plasma membrane long-chain FA transporter. Therapy with medium-chain FAs, which do not require CD36-facilitated transport, has been shown to improve cardiac function and hypertrophy in SHRs despite persistent hypertension. However, little is known about the underlying molecular mechanisms. The aim of this study was to document the impact of medium-chain triglyceride (MCT) therapy in SHRs on the expression level and activity of metabolic enzymes and signaling pathways. Four-week-old male SHRs were administered MCT (SHR-MCT) or long-chain triglyceride (SHR-LCT) for 16 wk. We used Wistar-Kyoto (WKY) rats as controls (WKY-MCT and WKY-LCT). The SHR-MCT group displayed improved cardiac dysfunction [as assessed by left ventricular (LV) end-diastolic pressure and the positive and negative first derivatives of LV pressure/ P value], a shift in the β-myosin heavy chain (MHC)-to-α-MHC ratio, and cardiac hypertrophy compared with the SHR-LCT group without an effect on blood pressure. Administration of MCT of SHRs reversed the LCT-induced reduction in the cardiac FA metabolic enzymatic activities of long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) and medium-chain acyl-CoA dehydrogenase (MCAD). In the SHR-MCT group, the protein expression and transcriptional regulation of myocardial peroxisome proliferator-activated receptor-α, which regulates the transcription of LCHAD and MCAD genes, corresponded to the changes seen in those enzymatic activities. Furthermore, MCT intake caused an inhibition of JNK activation in SHR hearts. Collectively, the observed changes in the myocardial activity of metabolic enzymes and signaling pathways may contribute to the improved cardiac dysfunction and hypertrophy in SHRs following MCT therapy.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Key nutrients important in the management of canine myxomatous mitral valve disease and heart failure;Journal of the American Veterinary Medical Association;2022-10-08

2. Ketone bodies for the failing heart: fuels that can fix the engine?;Trends in Endocrinology & Metabolism;2021-10

3. Reactivation of fatty acid oxidation by medium chain fatty acid prevents myocyte hypertrophy in H9c2 cell line;Molecular and Cellular Biochemistry;2020-09-30

4. Hypoketotic hypoglycemia in citrin deficiency: a case report;BMC Pediatrics;2020-09-22

5. Cardiac ketone body metabolism;Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease;2020-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3