Sphingosine-1-phosphate receptor expression in cardiac fibroblasts is modulated by in vitro culture conditions

Author:

Landeen Lee K.,Aroonsakool Nakon,Haga Jason H.,Hu Betty S.,Giles Wayne R.

Abstract

The bioactive molecule sphingosine-1-phosphate (S1P) binds with high affinity to five recognized receptors (S1P1–5) to affect various tissues, including cellular responses of cardiac fibroblasts (CFbs) and myocytes. CFbs are essential components of myocardium, and detailed study of their cell signaling and physiology is required for a number of emerging disciplines. Meaningful studies on CFbs, however, necessitate methods for selective, reproducible cell isolations. Macrophages reside within normal cardiac tissues and often are isolated with CFbs. A protocol was therefore developed that significantly reduces macrophage levels and utilizes more CFb-specific markers (discoidin domain receptor-2) instead of, or in addition to, more commonly used cytoskeletal markers. Our results demonstrate that primary isolated, purified CFbs express predominantly S1P1–3; however, the relative levels of these receptor subtypes are modulated with time and by culture conditions. In coculture experiments, macrophages altered CFb S1P receptor levels relative to controls. Further investigations using known macrophage-secreted factors showed that S1P and H2O2 had minimal effects on CFb S1P1–3 expression, whereas transforming growth factor-β1, TNF-α, and PDGF-BB significantly altered all S1P receptor subtypes. Lowering FBS concentrations from 10% to 0.1% increased S1P2, whereas supplementation with either PDGF-BB or Rho-associated protein kinase inhibitor Y-27632 significantly elevated S1P3 levels. S1P2 and S1P3 receptor levels are known to regulate cell migration. Using cells isolated from either normal or S1P3-null mice, we demonstrate that S1P3 is important and necessary for CFb migration. These results highlight the importance of demonstrating CFb culture purity in functional studies of S1P and also identify conditions that modulate S1P receptor expression in CFbs.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3