Oxidative stress and adenosine A1 receptor activation differentially modulate subcellular cardiomyocyte MAPKs

Author:

Ballard-Croft Cherry,Locklar Adam C.,Keith Byron J.,Mentzer Robert M.,Lasley Robert D.

Abstract

The mechanism by which distinct stimuli activate the same mitogen-activated protein kinases (MAPKs) is unclear. We examined compartmentalized MAPK signaling and altered redox state as possible mechanisms. Adult rat cardiomyocytes were exposed to the adenosine A1 receptor agonist 2-chloro- N6-cyclopentyladenosine (CCPA; 500 nM) or H2O2 (100 μM) for 15 min. Nuclear/myofilament, cytosolic, Triton-soluble membrane, and Triton-insoluble membrane fractions were generated. CCPA and H2O2 activated p38 MAPK and p44/p42 ERKs in cytosolic fractions. In Triton-soluble membrane fractions, H2O2 activated p38 MAPK and p42 ERK, whereas CCPA had no effect on MAPK activation in this fraction. The greatest difference between H2O2 and CCPA was in the Triton-insoluble membrane fraction, where H2O2 increased p38 and p42 activation and CCPA reduced MAPK activation. CCPA also increased protein phosphatase 2A activity in the Triton-insoluble membrane fraction, suggesting that the activation of this phosphatase may mediate CCPA effects in this fraction. The Triton-insoluble membrane fraction was enriched in the caveolae marker caveolin-3, and >85% of p38 MAPK and p42 ERK was bound to this scaffolding protein in these membranes, suggesting that caveolae may play a role in the divergence of MAPK signals from different stimuli. The antioxidant N-2-mercaptopropionyl glycine (300 μM) reduced H2O2-mediated MAPK activation but failed to attenuate CCPA-induced MAPK activation. H2O2 but not CCPA increased reactive oxygen species (ROS). Thus the adenosine A1 receptor and oxidative stress differentially modulate subcellular MAPKs, with the main site of divergence being the Triton-insoluble membrane fraction. However, the adenosine A1 receptor-mediated MAPK activation does not involve ROS formation.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3