Sonic hedgehog promotes autophagy of vascular smooth muscle cells

Author:

Li Haijie1,Li Jingjing1,Li Yuenan1,Singh Pavneet2,Cao Liang1,Xu Li-juan1,Li Dong1,Wang Yuebing1,Xie Zhiping1,Gui Yu34,Zheng Xi-Long12

Affiliation:

1. Department of Biochemistry and Molecular Biology, Nankai University School of Medicine, Tianjin, China;

2. Department of Biochemistry & Molecular Biology, Smooth Muscle Research Group, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada;

3. Department of Physiology and Pharmacology, Smooth Muscle Research Group, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada; and

4. School of Pharmacy, Nankai University, Tianjin, China

Abstract

Sonic hedgehog (Shh) is a morphogen critically involved in development that is reexpressed in atherosclerotic lesions. It also stimulates proliferation of vascular smooth muscle cells (SMCs). Autophagy in vascular SMCs is known to promote SMC survival and increase plaque stability. The aim of this study was to investigate whether Shh induces autophagy of vascular SMCs. Our study showed that both Shh protein and microtubule-associated protein 1 light chain 3 (LC3)-II were increased in SMCs within neointimal lesions of mouse common carotid arteries. In cultured mouse aortic SMCs, recombinant mouse Shh stimulated LC3-II levels. Overexpression of wild-type mouse Shh through the tetracycline-regulated expression-inducible system in human aortic SMCs time-dependently increased the levels of LC3-II and also stimulated protein kinase B (AKT) phosphorylation. Pretreatment with AKT inhibitor IV (AKTI IV) inhibited AKT phosphorylation and the increase in LC3-II. Shh-induced autophagy was further confirmed by the formation of autophagosomes as detected by immunostaining and transmission electron microscopy, which was inhibited by AKTI IV. Shh further increased SMC LC3-II in the presence of bafilomycin A1, (2 S,3 S)- trans-epoxysuccinyl-l-leucylamido-3-methylbutane ethyl ester, and pepstatin A or siRNA for the autophagy-related gene 7 (ATG7). In addition, Shh induced SMC proliferation, which was inhibited not only by AKTI IV but also by cyclopamine, an inhibitor of Shh receptor. Inhibition of autophagy with 3-methyladenine (3-MA), bafilomycin A1, or ATG7 siRNA resulted in inhibition of cell proliferation. Treatment with 3-MA, AKTI IV, or cyclopamine inhibited neointima formation in mouse common carotid arteries. Taken together, our results have shown that Shh induces autophagy of vascular SMCs involving AKT activation, suggesting a role of autophagy in Shh-induced cellular responses.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3