Determinants of left ventricular shear strain

Author:

Bovendeerd Peter H. M.,Kroon Wilco,Delhaas Tammo

Abstract

Mathematical models of cardiac mechanics can potentially be used to relate abnormal cardiac deformation, as measured noninvasively by ultrasound strain rate imaging or magnetic resonance tagging (MRT), to the underlying pathology. However, with current models, the correct prediction of wall shear strain has proven to be difficult, even for the normal healthy heart. Discrepancies between simulated and measured strains have been attributed to 1) inadequate modeling of passive tissue behavior, 2) neglecting active stress development perpendicular to the myofiber direction, or 3) neglecting crossover of myofibers in between subendocardial and subepicardial layers. In this study, we used a finite-element model of left ventricular (LV) mechanics to investigate the sensitivity of midwall circumferential-radial shear strain ( Ecr) to settings of parameters determining passive shear stiffness, cross-fiber active stress development, and transmural crossover of myofibers. Simulated time courses of midwall LV Ecrwere compared with time courses obtained in three healthy volunteers using MRT. Ecras measured in the volunteers during the cardiac cycle was characterized by an amplitude of ∼0.1. In the simulations, a realistic amplitude of the Ecrsignal could be obtained by tuning either of the three model components mentioned above. However, a realistic time course of Ecr, with virtually no change of Ecrduring isovolumic contraction and a correct base-to-apex gradient of Ecrduring ejection, could only be obtained by including transmural crossover of myofibers. Thus, accounting for this crossover seems to be essential for a realistic model of LV wall mechanics.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3