Induction of NO synthase in rat cardiac microvascular endothelial cells by IL-1 beta and IFN-gamma

Author:

Balligand J. L.1,Ungureanu-Longrois D.1,Simmons W. W.1,Kobzik L.1,Lowenstein C. J.1,Lamas S.1,Kelly R. A.1,Smith T. W.1,Michel T.1

Affiliation:

1. Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts.

Abstract

There are important phenotypic differences between endothelial cells of large vessels and the microvasculature and among microvascular endothelial cells isolated from different tissues and organs. In contrast to most macrovascular endothelial cells, we demonstrate that cultured cardiac microvascular endothelial cells (CMEC) have no detectable constitutive NO synthase (NOS) activity but have a robust increase in NOS activity in response to specific inflammatory cytokines. To determine the identity of the inducible NOS (iNOS) isoform(s) induced by cytokines, we used reverse-transcription polymerase chain reaction techniques to clone and sequence a 217-bp cDNA fragment from CMEC cultures pretreated with interleukin-1 beta (IL-1 beta) and interferon-gamma (IFN-gamma) that was identical to the corresponding portion of the murine macrophage iNOS cDNA. By use of this CMEC iNOS cDNA as a probe in Northern analyses, IL-1 beta, but not IFN-gamma, increased iNOS mRNA content in CMEC, although IFN-gamma markedly potentiated iNOS induction in these cells. In IL-1 beta- and IFN-gamma-pretreated CMEC, dexamethasone only minimally suppressed the rise in iNOS mRNA, protein abundance, or maximal iNOS enzyme activity in whole cell lysates but suppressed nitrite production by 60% in intact CMEC. Dual labeling of cytokine-pretreated CMEC in primary culture with an anti-iNOS antiserum and a fluorescein-labeled lectin specific for the microvascular endothelium of rat heart (GS-1) confirmed the presence of iNOS expression in these cells. iNOS was also detected in microvascular endothelium in situ in ventricular muscle from lipopolysaccharide-, but not sham-injected, rat hearts.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 109 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3