Affiliation:
1. Julius Silver Institute of Biomedical Engineering, Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa.
Abstract
An integrated left ventricular (LV) model that accounts for the three-phase (fiber-blood-interstitium) myocardial structure and composition is used to study the interactions among myocardial mechanics, coronary flow, and fluid and mass transport. Effects of ventricular load, coronary perfusion pressure, and fluid and mass transport on ventricular performance and coronary dynamics are studied here. In agreement with experimental observations, the analysis shows that 1) coronary flow impediment is not significantly affected by changes in the afterload and preload at constant coronary perfusion pressures, 2) an increase in coronary perfusion pressure increases the intramyocardial pressure (IMP) as well as the mean flow and oscillatory flow amplitude, 3) contractility has a direct effect on IMP and coronary flow impediment, and 4) changes in blood osmolarity and lymphatic outflow, which may cause myocardial edema, affect both ventricular mechanics and coronary flow. Clearly, accounting for fluid and mass transport allows to study the interactions among coronary flow, ventricular and myocardial mechanics, and intramyocardial fluid shifts.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献