Inhibition of vascular nitric oxide-cGMP pathway by plasma from ischemic hindlimb of rats

Author:

Jin J. S.1,Webb R. C.1,D'Alecy L. G.1

Affiliation:

1. Department of Physiology, University of Michigan Medical School, Ann Arbor 48109-0622, USA.

Abstract

The hypothesis was tested that plasma from ischemic hindlimbs facilitates hypertension. Ischemia-induced hypertension was generated in rats by infrarenal aortic cross clamping for 5 h after which plasma was obtained from femoral vein blood. In vitro contractile activity of naive aortic rings incubated for 2 h in plasma collected from ischemic rats demonstrated reduced relaxation to acetylcholine and nitroglycerin. Methylene blue (10(-5) M) induced greater contraction in rings incubated in control vs. ischemic plasma, suggesting that endogenous guanylate cyclase activity is decreased by ischemic plasma. However, 8-bromo-guanosine 3',5'-cyclic monophosphate (cGMP) relaxed equally strips incubated in ischemic or control plasma. Acetylcholine-induced nitrite release was significantly lower in ischemic vs. control plasma-incubated strips (8.6 +/- 2.7 vs. 28.2 +/- 2.3 ng/10 mg tissue wt, respectively). The impaired relaxation to acetylcholine in ischemic plasma-incubated rings was significantly increased by L-arginine but not by prior treatment of ischemic plasma with heating or superoxide dismutase and catalase. These findings suggest the impaired relaxation is mediated through inhibition of the nitric oxide-cGMP pathway. Prolonged blunting of vasodilation by ischemic plasma may therefore contribute to maintenance of a sustained vasoconstriction and ischemic hypertension.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3