Force, not sarcomere length, correlates with prolongation of isosarcometric contraction

Author:

Janssen P. M.1,Hunter W. C.1

Affiliation:

1. Department of Biomedical Engineering, Johns Hopkins School ofMedicine, Baltimore, Maryland 21205, USA.

Abstract

Recent studies have emphasized the importance of the late systolic phase for understanding ventricular ejection. To examine the myocardial factors controlling this phase, we studied the timing of twitch contraction in nine excised rat trabeculae contracting isosarcometrically. By varying both sarcomere length (SL) and extracellular Ca2+ concentration ([Ca2+]) we determined which of these factors or the developed peak twitch force correlated better with the prolongation of contraction. We focused on the period from just before the peak of force to the time of half relaxation. SL was measured by laser diffraction and kept constant using adaptive control. Peak twitch force was the factor most tightly correlated with prolongation of contraction: as force rose from 10 to 100 mN/mm2, duration tripled from 100 to 300 ms. When the trend with force was removed, however, no separate influence of SL remained. Increase in [Ca2+]o abbreviated contraction equally at all force levels. Prolongation of late systolic contraction was also highly correlated with prolongation of the time constant for late relaxation, suggesting a common mechanism by which peak twitch force lengthens the entire subsequent time course of a twitch. We hypothesize that 1) increased force correlates with prolonged Ca2+ binding to troponin-C, and/or 2) attached cross bridges act cooperatively to oppose the inhibiting effects of tropomyosin as Ca2+ is lost from the thin filaments.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 103 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Translating myosin-binding protein C and titin abnormalities to whole-heart function using a novel calcium-contraction coupling model;Journal of Molecular and Cellular Cardiology;2024-05

2. A jump-diffusion stochastic formalism for muscle contraction models at multiple timescales;Journal of Applied Physics;2023-11-15

3. An Instrument for High-throughput Testing of Heart Tissue In Vitro;2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC);2023-07-24

4. Varying thin filament activation in the framework of the Huxley'57 model;International Journal for Numerical Methods in Biomedical Engineering;2022-10-21

5. Biophysically detailed mathematical models of multiscale cardiac active mechanics;PLOS Computational Biology;2020-10-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3