Affiliation:
1. Laboratoire de Pharmacologie et Physiopathologie Cellulaires, Universite Louis Pasteur de Strasbourg, France.
Abstract
The mechanisms by which guanosine 3',5'-cyclic monophosphate (cGMP) modulates the contraction induced by ATP were investigated in small mesenteric resistance arteries of the rat. The nitric oxide donors 3-morpholinosydnonimine (SIN-1, 10 microM) and sodium nitroprusside (SNP, 10 microM) increased cGMP but not adenosine 3',5'-cyclic monophosphate (cAMP) content of the tissue. SIN-1, SNP, and 8-bromoguanosine 3',5'-cyclic monophosphate (8-BrcGMP, 100 microM) inhibited the myosin light chain phosphorylation and the contractile response to ATP. Both effects were completely reversed by the selective inhibitor of cGMP protein kinase, Rp-8-bromoguanosine 3',5'-cyclic monophosphorothioate (30 microM). The sensitivity to Ca2+ of arteries permeabilized with Staphylococcus aureus alpha-toxin (4,000 hemolytic units/ml) was not affected by 8-BrcGMP. The two nitric oxide donors and 8-BrcGMP decreased the rise in intracellular Ca2+ induced by ATP. The vasodilator agents abolished the contractile response to the exogenous calcium in vessels that were exposed to 3 mM ATP after depletion of intracellular Ca2+ stores. Thapsigargin (1 microM), an inhibitor of the sarcoplasmic reticulum Ca(2+)-adenosinetriphosphatase, reversed the inhibitory effect of the vasodilator agents when the contraction induced by ATP was elicited in the presence of the Ca2+ entry blocker nitrendipine (1 microM) or in Ca(2+)-free medium. These results show that cGMP inhibits ATP-induced contraction by decreasing intracellular Ca2+ concentration in small resistance arteries. They indicate that this effect results from decreased Ca2+ influx and enhanced Ca2+ sequestration through a thapsigargin-sensitive pump via activation of a cGMP protein kinase.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献