Oxidative-stress response in vascular endothelial cells exposed to acellular hemoglobin solutions

Author:

Motterlini R.1,Foresti R.1,Vandegriff K.1,Intaglietta M.1,Winslow R. M.1

Affiliation:

1. Department of Bioengineering, University of California, San Diego, LaJolla 92093, USA.

Abstract

We investigated the effect of different hemoglobins on the activation of endothelial heme oxygenase (HO), an inducible "stress" protein, which is responsible for heme catabolism, and we determined whether the propensity of hemoglobins to autoxidize correlates with endothelial heme uptake and cell injury. Porcine aortic endothelial cells were incubated for 6 h in the presence of 60 microM unmodified hemoglobin A0 (HbA0), hemoglobin cross-linked between the alpha-chains with bis-(3,5-dibromosalicyl)fumarate (alpha alpha Hb), or cyanomet-alpha alpha-hemoglobin (CNmet alpha alpha Hb). Endothelial HO activity augmented 4.1-fold in the presence of alpha alpha Hb, 2.7-fold with HbA0, and 1.8-fold with CNmet alpha alpha Hb over the control value. Deferoxamine, but not catalase or dimethylthiourea, partially attenuated the HO induction produced by alpha alpha Hb. The rates of methemoglobin formation exhibited a linear relationship over the time of incubation (r = 0.94), and the apparent rate constant was 1.8-fold higher for alpha alpha Hb (0.023 h-1) than for HbA0 (0.013 h-1). Endothelial heme content and lactate dehydrogenase (LDH) release, an index of cell injury, were also higher in alpha alpha Hb compared with HbA0 and CNmet alpha alpha Hb groups (P < 0.05). Deferoxamine but not catalase markedly reduced the release of LDH induced by alpha alpha Hb, whereas dimethylthiourea provided only a partial cytoprotection. These studies suggest that 1) the higher rate of oxidation of alpha alpha Hb contributes to the augmented endothelial HO activity, and 2) both heme release and iron-mediated oxygen radical formation are major contributors to endothelial oxidative stress and cytotoxicity generated by the cross-linked hemoglobin.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3