Affiliation:
1. Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, USA.
Abstract
We investigated whether nitric oxide (NO) played a role in the generation of cerebrocortical flow oscillations and their modification by hypocapnia, hypercapnia, and halothane administration. Parietal cortical laser-Doppler flow (LDF) was monitored transcranially in anesthetized (barbiturate + 0-1.0% halothane), artificially ventilated, adult male Sprague-Dawley rats. Thirty minutes after infusion of N omega-nitro-L-arginine methyl ester (L-NAME, 20 mg/kg i.v.) mean arterial pressure (MAP) increased from 105 +/- 10 to 132 +/- 15 mmHg (P < 0.02), while mean LDF decreased from 159 +/- 36 to 135 +/- 30 perfusion units (PU, P < 0.05). Oscillations in LDF at a frequency of 6.3-7.8 cycles/min and amplitude of 10% were induced or augmented by L-NAME but not by D-NAME or indomethacin (2 mg/kg i.p.). L-arginine (200 mg/kg) abolished the oscillations post-L-NAME at constant MAP. Sodium nitroprusside infusion (10(-5) M, 5-50 microliters/min) reversed the L-NAME-induced increase in MAP and decrease in mean LDF but did not attenuate the flow oscillations. Hypocapnia post-L-NAME decreased LDF to 110 +/- 20 PU (P < 0.001) and augmented the flow oscillations (amplitude: 11-31%). Hypercapnia (5% CO2) or halothane (0.4-1.0%) suspended the oscillations in the presence of L-NAME. The results suggest that NO synthase activity inhibits cerebrocortical flow oscillations, and NO is not an obligatory mediator of the effects of halothane, hypocapnia, and hypercapnia on oscillatory activity.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献