Mechanisms of vascular preservation by a novel NO donor following rat carotid artery intimal injury

Author:

Guo J. P.1,Panday M. M.1,Consigny P. M.1,Lefer A. M.1

Affiliation:

1. Department of Physiology, Jefferson Medical College, Thomas JeffersonUniversity, Philadelphia, Pennsylvania 19107, USA.

Abstract

We studied the effects of a novel organic nitric oxide (NO) donor, 4-hydroxymethyl-furazan-3-carboxylic acid-2-oxide (CAS-1609), in a rat carotid artery intimal injury model. The NO donor, CAS-1609, or its non-NO-donating control compound, 4-hydroxymethyl-furazan-3-carboxylic acid (C-93-4845), was infused intravenously at 30 micrograms/day. Seven days after injury, carotid artery rings contracted only 56 +/- 6 mg to NG-nitro-L-arginine methyl ester in C-93-4845-treated rats, compared with 120 +/- 17 mg in CAS-1609-treated rats (P < 0.02), indicating a preservation of endogenous NO release. Improved responses to the endothelium-dependent dilator, acetylcholine, also occurred in injured arteries treated with CAS-1609. Morphometric analysis of injured carotid arteries given the inactive compound showed marked intimal thickening with an intimal-to-medial ratio (I/M) of 0.76 +/- 0.02, compared with a significantly lower I/M of 0.32 +/- 0.04 (P < 0.01) in injured carotid arteries given CAS-1609. Additionally, CAS-1609 was found to have a concentration-dependent stimulatory effect on cultured rat aortic endothelial cell proliferation (P < 0.01) but and inhibitory effect on platelet-derived growth factor-BB (10 ng/ml)-stimulated rat aortic smooth muscle cell proliferation (P < 0.01). This is the first study to demonstrate that NO plays a dual role in vascular cell proliferation, stimulating endothelial cells but inhibiting smooth muscle cell proliferation. This dual effect of NO on cell proliferation is associated with an in vivo reduction in neointimal thickening and an acceleration of endothelial recovery determined by both anatomic and functional methods.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3