Selective reduction of PVR by inhalation of a cGMP analogue in a porcine model of pulmonary hypertension

Author:

Lawson C. A.1,Smerling A. J.1,Naka Y.1,Burkhoff D.1,Dickstein M. L.1,Stern D. M.1,Pinsky D. J.1

Affiliation:

1. Department of Anesthesiology, Columbia University College ofPhysicians and Surgeons, New York, New York 10032, USA.

Abstract

Selective reduction of pulmonary vascular resistance (PVR) remains a therapeutic goal for the treatment of pulmonary hypertension, but current therapeutic options remain limited. Although the gas nitric oxide (NO) selectively dilates the pulmonary vascular bed, it requires special equipment for administration, has a short biologic half-life, and is potentially toxic. We hypothesized that stimulation of the NO pathway at the level of its second messenger, guanosine 3',5'-cyclic monophosphate (cGMP), by targeted pulmonary delivery of a membrane-permeable nonhydrolyzable cGMP analogue would cause selective pulmonary vasodilation. Pulmonary hypertension was induced in 21 pigs by the intravenous infusion of a thromboxane A2 analogue (9,11-dideoxy-9 alpha,11 alpha-epoxymethanoprostaglandin F2 alpha). Inhaled 8-bromoguanosine 3',5'-cyclic monophosphate (8-BrcGMP) lowered PVR in a time- and dose-dependent manner, with maximal effect achieved after 20 min. Compared with physiological saline control, 8-BrcGMP inhalation (3.0 micrograms/kg) lowered PVR by 25 +/- 3% (P < 0.01), whereas there was no significant decline in systemic vascular resistance (4 +/- 6%); mean pulmonary arterial pressure declined 13 +/- 3% (P < 0.01), whereas there was little change in mean arterial pressure; cardiac output increased 10 +/- 4% (P < 0.05). PVR did not decrease after inhalation of noncyclic 8-bromoguanosine 5'-monophosphate, indicating that stimulation of the NO-cGMP pathway beyond the level of NO results in pulmonary vasodilation independent of stimulation of purinergic receptors.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3