Mechanisms of conduction time hysteresis in rabbit atrioventricular node

Author:

Billette J.1,Zhao J.1,Shrier A.1

Affiliation:

1. Department of Physiology, Faculty of Medicine, University of Montreal, Quebec, Canada.

Abstract

The functional origin of atrioventricular nodal hysteresis was studied in isolated rabbit heart preparations. This hysteresis is characterized by asymmetric changes in nodal conduction time (NCT) occurring for symmetric changes in cycle length. The respective contribution of the nodal properties of recovery, facilitation, and fatigue to the beat-to-beat changes in NCT observed during paired symmetric ramps of decreasing and increasing cycle length was determined with specifically design stimulation protocols. Nodal hysteresis was found to be entirely accounted for by variations in the contribution of nodal recovery and fatigue properties observed at corresponding cycle lengths. The study establishes how this contribution varies on a beat-to-beat basis as a result of cycle length history. This holds true for the numerous changes in hysteresis observed in response to changes in the sequence and slope of the ramps. Facilitation clearly affected NCT during these responses but did not contribute to the hysteresis. Moreover, the study demonstrates that there is no inherent change in the characteristics of nodal function with the direction of the ramp that could account for the hysteresis. Thus nodal hysteresis arises from nodal functional properties of recovery and fatigue but does not constitute a distinct independent intrinsic property of the node.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An integrated overview of AV node physiology;Pacing and Clinical Electrophysiology;2019-06-10

2. Integrated rate-dependent and dual pathway AV nodal functions: principles and assessment framework;American Journal of Physiology-Heart and Circulatory Physiology;2014-01-15

3. Characteristics and mechanisms of the effects of heart rate history on transient AV nodal responses;American Journal of Physiology-Heart and Circulatory Physiology;1996-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3