Role of α1-adrenergic vasoconstriction in the regulation of skeletal muscle blood flow with advancing age

Author:

Wray D. Walter,Nishiyama Steven K.,Richardson Russell S.

Abstract

α1-Adrenergic vasoconstriction during dynamic leg exercise is diminished in younger individuals, although the extent of this exercise-induced “sympatholysis” in the elderly remains uncertain. Thus, in nine young (25 ± 1 yr) and six older (72 ± 2 yr) healthy volunteers, we evaluated changes in leg blood flow (ultrasound Doppler) during blood flow-adjusted intra-arterial infusion of phenylephrine (PE; a selective α1-adrenergic agonist) at rest and during knee-extensor leg exercise at 20, 40, and 60% of maximal work rate (WRmax). To probe the potential contributors to exercise-induced changes in α1-adrenergic receptor sensitivity, exercising leg O2 consumption (V̇o2) and lactate efflux were also evaluated ( n = 10). At rest, the PE-induced vasoconstriction (i.e., decrease in leg blood flow) was diminished in older (−37 ± 3%) compared with young (−54 ± 4%) subjects. During exercise, the magnitude of α1-adrenergic vasoconstriction in the active leg decreased in both groups. However, compared with young, older subjects maintained a greater vasoconstrictor response to PE at 40% WRmax (−14 ± 3%, older; −7 ± 2%, young) and 60% WRmax (−11 ± 3%, older; −4 ± 3%, young). It is possible that this observation may be attributed to lower absolute work rates in the older group, because, for a similar absolute work rate (≈10 W) and leg V̇o2 (≈0.36 l/min), vasoconstriction to PE was not different between groups (−14 ± 3%; older; −17 ± 5%, young). Together, these data challenge the concept of reduced sympatholysis in the elderly, suggesting instead that the inhibition of α1-adrenergic vasoconstriction in the exercising leg is associated with work performed and, therefore, more closely related to the rate of oxidative metabolism than to age per se.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3