A2bR-dependent signaling alters immune cell composition and enhances IL-6 formation in the ischemic heart

Author:

Alter Christina1,Ding Zhaoping1,Flögel Ulrich1,Scheller Jürgen2,Schrader Jürgen1

Affiliation:

1. Department of Molecular Cardiology, University Düsseldorf, Medical Faculty, Düsseldorf, Germany

2. Institute of Biochemistry and Molecular Biology II, University Düsseldorf, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany

Abstract

Although the cardioprotective effect of adenosine is undisputed, the role of the adenosine A2breceptor (A2bR) in ischemic cardiac remodeling is not defined. In this study we aimed to unravel the role A2bR plays in modulating the immune response and the healing mechanisms after myocardial infarction. Genetic and pharmacological (PSB603) inactivation of A2bR as well as activation of A2bR with BAY60-6583 does not alter cardiac remodeling of the infarcted (50-min left anterior descending artery occlusion/reperfusion) murine heart. Flow cytometry of immune cell subsets identified a significant increase in B cells, NK cells, CD8 and CD4 T cells, as well as FoxP3-expressing regulatory T cells in the injured heart in A2bR-deficient mice. Analysis of T-cell function revealed that expression and secretion of interleukin (IL)-2, interferon (IFN)γ, and tumor necrosis factor (TNF)α by T cells is under A2bR control. In addition, we found substantial cellular heterogeneity in the response of immune cells and cardiomyocytes to A2bR deficiency: while in the absence of A2bR, expression of IL-6 was greatly reduced in cardiomyocytes and immune cells except T cells, and expression of IL-1β was strongly reduced in cardiomyocytes, granulocytes, and B cells as determined by quantitative PCR. Our findings indicate that A2bR signaling in the ischemic heart triggers substantial changes in cardiac immune cell composition of the lymphoid lineage and induces a profound cell type-specific downregulation of IL-6 and IL-1β. This suggests the presence of a targetable adenosine–A2bR–IL-6-axis triggered by adenosine formed by the ischemic heart.NEW & NOTEWORTHY Genetic deletion and pharmacological inactivation/activation of A2bR does not alter cardiac remodeling after MI but is associated by compensatory upregulation of various pro- and anti-inflammatory immune cell subsets (B cells, NK cells, CD8 and CD4 T cells, regulatory T cells). In the inflamed heart, A2bR modulates the expression of IL-2, IFNγ, TNFα in T cells and of IL-6 in cardiomyocytes, monocytes, granulocytes and B cells. This suggests an important adenosine–IL-6 axis, which is controlled by A2bR via local adenosine.

Funder

German Research Foundation

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3